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We consider the slow deformation of a relatively inviscid conducting drop surrounded
by a viscous insulating fluid subject to a uniform electric field. The general behaviour is
to deform and elongate in the direction of the field. Detailed numerical computations,
based on a boundary integral formulation, are presented. For fields below a critical
value, we obtain the evolution of the drop to an equilibrium shape; above the critical
value, we calculate the drop evolution up to breakup. At breakup it appears that
smaller droplets are emitted from the ends of the drop with a charge greater than
the Rayleigh limit. As the electric field strength is increased the ejected droplet size
decreases. A further increase in field strength results in the mode of breakup changing
to a thin jet-like structure being ejected from the end. The shape of all drops is very
close to spheroidal up to aspect ratios of about 5. Also, for fields just above the
critical value there is a period of slow deformation which increases in duration as
the critical field strength is approached from above. Slender-body theory is also used
to model the drop behaviour. A similarity solution for the slender drop is obtained
and a finite-time singularity is observed. In addition, the general solution for the
slender-body equations is presented and the solution behaviour is examined. The
slender-body results agree only qualitatively with the full numerical computations.
Finally, a spheroidal model is briefly presented and compared with the other models.

1. Introduction
We examine the slow deformation of a conducting inviscid drop suspended in a

viscous insulating fluid subject to a uniform electric field. The motivation for this work
derives from the wide range of industrial settings where conducting drops are exposed
to electric fields. Examples of these include electrohydrodynamic atomization, the
purification of oils, the breakup of water drops in thunderstorms, and the behaviour
of drops in ink-jet printers. An interesting and important application concerns the
breakdown of dielectrics due to the presence of water droplets, cases of which occurred
in the 1990s in pedestal insulators at UK power stations.

Pedestal insulators are large cylindrical ceramic insulators filled with bitumen, a
very viscous insulating fluid. Between the ends of the insulators there is a high
potential difference (about 300 kV phase to phase). Owing to faulty gaskets in the
caps of the insulators, on a number of occasions rainwater leaked into the insulators
and collected there. The accumulated water compromised the performance of the
device, resulting in current spikes across the insulator, and in some cases catastrophic
explosion. We use the pedestal insulator problem as the principal motivation of this
work. However, rather than use the exact insulator geometry, we consider the more
general problem of the deformation of a single inviscid conducting drop suspended
in an infinite insulating viscous fluid subject to a uniform electric field.
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Wilson & Taylor (1925) were the first to examine the shapes of bubbles in an
electric field. In their experiments, they found some stable deformed shapes, as well
as some bubbles with unstable pointed ends from which thin filaments were ejected.
O’Konski & Thacher (1953) used a spheroidal approximation (where the drop is
assumed to always be spheroidal in shape) along with an energy balance to determine
the equilibrium spheroid for conducting and dielectric drops. It was found that below
a critical electric field strength, conducting drops would attain an equilibrium. The
spheroidal approximation has also been used by Abbi & Chandra (1956), Garton &
Krasucki (1964), Taylor (1964), and Sherwood (1988) to study the equilibrium shapes
for drops in a electric field. Additionally, Taylor (1964) calculated the angle for a
pointed end on a conducting drop in equilibrium, and Ramos & Castellanos (1994)
extended this work to dielectric drops. Higher modes of deformation were considered
by Sample, Raghupathy & Hendricks (1970), and Grigor’ev, Sharov & Shiryaeva
(1999) included effects of compressibility in the bubbles. Finally, Brazier-Smith (1971)
and Miksis (1981) have calculated the equilibrium drop shapes numerically. The
different approximations for the equilibrium shapes and for the critical electric field
strength, while obtained from a variety of methods, are all in fairly good agreement. As
the equilibrium shapes are independent of viscosity, all of these results are applicable
to the case of a conducting drop suspended in a viscous fluid.

Slender-body theory has also been used to calculate the equilibrium shapes for
conducting and dielectric drops (Sherwood 1991). Li, Halsey & Lobkovsky (1994)
and Stone, Lister & Brenner (1999) determined the equilibrium shapes of conducting
drops by matching the results of slender-body theory with Taylor’s solution for conical
ends. However, this work is more applicable to dielectric drops, where long and thin
equilibrium drop shapes are possible, than to conducting drops where the ‘longest’
equilibrium shape has an aspect ratio of about 1.8.

Garton & Krasucki (1964) performed experiments with conducting drops suspended
in another fluid. More recent experiments have been conducted by Ha & Yang (2000),
Eow, Ghadiri & Sharif (2001), and Eow & Ghadiri (2003). The form of breakup (and
the shape of the drop at breakup) is found to depend not only on the strength of the
electric field, but also on the ratio of the viscosity of the drop to that of the surrounding
fluid. Indeed, for the related problem of the deformation of bubbles and drops in slow
extensional driving flows, Taylor (1934) showed that the viscosity ratio was critical in
determining the mode of breakup of the drop. He found experimentally that when the
surrounding fluid is much more viscous than the drop, it is possible to have a stable
elongating drop that continues to elongate without any sign of breakup. However, for
drops with a larger viscosity, droplets would break off from the ends. Hence we might
expect the case of a conducting drop surrounded by a much more viscous fluid to be-
have differently from other viscosity combinations. Furthermore, in the limit of small
drop viscosity, the behaviour should resemble that of the inviscid drop. Surprisingly,
the case of an inviscid (or very low viscosity) drop has yet to be examined in depth.

The time-dependent deformation of drops has attracted little attention, and again,
the case of a conducting drop surrounded by a much more viscous fluid has not been
considered. In addition to calculating equilibrium drop shapes, Sherwood (1988) used
boundary integral numerical computations to study the time-dependent behaviour
of deforming drops. His results, however, were restricted to drops suspended in an
equally viscous fluid. Other numerical work for dielectric drops has been done by
Feng & Scott (1996), Baygents, Rivette & Stone (1998), and Hirata et al. (2000).

In this work we attempt to present a more complete picture of the behaviour
of an inviscid drop suspended in a viscous fluid subject to an electric field. We
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Figure 1. Physical setup of the problem.

begin in § 2 with a brief formulation of the problem. In § 3 numerical results based
on boundary integral methods are presented. The behaviour of the drop right up
to the point of breakup is determined. In addition, various characteristics of the
breakup are examined. In § 4 we develop a slender-body model to study the dynamic
behaviour of long and thin drops. For conditions where no equilibrium shape exists,
it is reasonable to assume that the drop will elongate into a long slender drop and
then either keep deforming indefinitely or undergo some form of breakup. We present
a similarity solution, and examine the general time-dependent behaviour for slender
drops. Finally, we end in § 5 with some concluding remarks. In the Appendix, we
present a simplified spheroidal model that is compared to the other models. It is
shown to be very accurate for deformations up to an aspect ratio of 5.

2. Problem formulation
We examine the slow deformation of a conducting fluid drop, surrounded by an

insulating viscous fluid, subject to a uniform electric field, Ê0. We assume that the
problem is axisymmetric, with the axis of symmetry parallel to the electric field, and
that the surrounding fluid is infinite in extent. The basic physical setup is shown
in figure 1. We assume that the two fluids are immiscible, so that our domain is
always divided into two simply connected regions: Ωd , the fluid drop, and Ω , the
surrounding fluid. The interface between the drop and the surrounding fluid is
denoted by ∂Ωd . Both fluids are assumed to be incompressible and of equal density.
We restrict our attention to the case where the surrounding fluid is highly viscous
and the drop is relatively inviscid. Finally, we assume that far away from the drop
the electric field is uniform and the fluid is stationary. Quantities denoted with a ‘hat’
are dimensional while quantities without a hat are dimensionless. We also adopt the
Einstein summation convention for repeated indices.

Because we are considering slow deformation, we use the Stokes equations. For
Stokes flow, time-dependence enters the problem only through the kinematic boundary
condition for the drop surface. This implies that at each point in time we have an
electrostatic problem for the electric field and a stationary Stokes problem (with an
imposed surface stress) for the velocity field, that must be solved given the current
drop shape; the drop shape then evolves via the kinematic condition.

2.1. Physical equations and boundary conditions

For a drop which is a good conductor, the time scale required for charge to move
around on the surface of the drop is much smaller than the time scale on which
the shape of the drop changes. Thus for the electric field we have an electrostatic
problem: the electric field essentially adjusts instantaneously to any change in the
drop shape. We can describe the electric field exterior to the drop, Ê, in terms of an
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electric potential, θ̂ ,

Ê = −∇̂θ̂ . (2.1)

The electric potential then satisfies Laplace’s equation in the surrounding fluid:

∇̂2θ̂ = 0 in Ω. (2.2)

For a conducting drop the electric field at the surface of the drop must be normal
to the surface. Hence the drop surface is a surface of constant electric potential; we
can without loss of generality set that constant to zero:

θ̂ = 0 on ∂Ωd. (2.3)

Finally, far away from the drop the electric field is uniform:

∇̂θ̂ → −Ê0 far away from the drop. (2.4)

Given the drop shape, (2.2)–(2.4) determine the electric potential, and thus the electric
field surrounding the drop.

As we are only interested in the slow deformation (i.e. low-Reynolds-number regime)
and the viscosity of the drop is insignificant compared to that of the surrounding
fluid, we can assume that the unsteady and nonlinear inertial forces are negligible.
Thus, the pressure inside the drop is spatially constant. (This constant does, however,
change with time as the drop deforms.) Furthermore, we are not concerned with the
flow inside the drop as the motion of the fluid in the drop has no effect on the
surrounding flow; it merely moves as necessary to accommodate the deformation
of the drop. Since the problem is axisymmetric, we can introduce the Stokes stream
function, ψ̂ , for the flow in the surrounding fluid, the components of the velocity being
expressible in terms of its derivatives. Then the stream function satisfies the equation

Ê4ψ̂ = 0 in Ω. (2.5)

A general expression for the operator Ê2 in curvilinear coordinates can be found in
Happel & Brenner (1965).

On the surface of the drop we must have a balance of stresses. As the drop is
inviscid, the tangential stress on the surface must be zero:

τ̂ ij ni tj = 0 on ∂Ωd, (2.6)

where

τ̂ ij = µ̂ ˆ̇γ ij = µ̂

(
∂ûi

∂x̂j

+
∂ûj

∂x̂i

)
(2.7)

is the deviatoric stress tensor, n is the unit normal of the drop surface, t is a unit
tangent vector of the drop surface, µ̂ is the viscosity of the surrounding fluid, and ˆ̇γ ij

is the rate-of-strain tensor. (Since our problem is axisymmetric, it is φ-independent,
where φ is the azimuthal angle, and we only need to consider one tangent vector
that lies in a plane φ = constant.) The normal stress on the surface must balance the
internal drop pressure, the electric stress, and surface tension:

p̂d − p̂ + τ̂ ij ninj +
1

2
ε̂0

(
∂θ̂

∂n

)2

− γ̂ sK̂ = 0 on ∂Ωd, (2.8)

where p̂d is the internal drop pressure, p̂ is the pressure in the surrounding fluid, ε̂0

is the permittivity of the surrounding fluid, ∂/∂n is the normal derivative, γ̂ s is the
surface tension, and K̂ is twice the mean curvature of the drop surface. The electric
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stress term in the normal stress balance is the only place where the electric field
couples into the fluid flow. It is this term that drives the deformation of the drop.

Given the drop shape and the electric potential, (2.5), (2.6), and (2.8), combined
with the condition of zero flow at infinity are sufficient to determine ψ̂ (up to a
constant), and hence the velocity, û, exterior to the drop. Finally, having determined
û, the drop surface, ∂Ωd , which is denoted by a level set function F̂ (x̂, t̂) = 0 for some
function F̂ , evolves according to the kinematic condition

∂F̂

∂t̂
+ û · ∇̂F̂ = 0. (2.9)

Equations (2.2)–(2.6), (2.8), (2.9), plus conservation of mass for the drop (i.e. constant
drop volume) and zero flow at infinity, form the full set of equations that govern the
behaviour of the drop.

3. Boundary integral method
In this section we formulate the problem in terms of boundary integral equations.

The resulting equations are then discretized for numerical computations. To non-
dimensionalize the problem we construct the relevant length, time, and velocity scales
from the physical parameters of the problem and make the following change to
non-dimensional variables:

∇̂ =
1

L̂
∇ t̂ = T̂ t =

µ̂L̂

γ̂ s

t, ûi = Ûui =
γ̂ s

µ̂
ui, p̂ =

γ̂ s

L̂
p, (3.1)

ˆ̇γ ij =
1

T̂
γ̇ij =

γ̂ s

µ̂L̂
γ̇ij , θ̂ = Ê0L̂θ, ψ̂ = Û L̂2ψ =

γ̂ sL̂
2

µ̂
ψ, (3.2)

where L̂ =(3V̂ /(4π))1/3, V̂ is the volume of the drop, and Ê0 = |Ê0|.
With this scaling, viscosity µ̂ disappears from the problem, as it only affects the rate

at which things happen. Only one parameter remains in the problem, the dimensionless
electric field strength,

β =
ε̂0Ê0

2
L̂

γ̂ s

, (3.3)

which appears in the non-dimensional version of (2.8):

pd − p + τijninj +
1

2
β

(
∂θ

∂n

)2

− K = 0 on ∂Ωd. (3.4)

3.1. Boundary integral formulation

Because of the electrostatic nature of the problem, the electric field can be calculated
independently of the fluid flow. The electric stress, which is determined by the electric
field, is then used in the calculation of the fluid flow.

Since the electric field potential satisfies Laplace’s equation we can use precisely the
same boundary integral formulation as Pozrikidis (1997, Ch. 10) for potential flow.
For this formulation we require the electric potential to go to zero far away from the
drop. Thus, we write

θ(x) = −x + θ̃(x). (3.5)
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Now θ̃(x) = x on ∂Ωd and θ̃ (x) → 0 far away from the drop. Then the boundary
integral equation for the electric potential θ̃ can be written

θ̃(x0) = −2

∫
∂Ωd

G(x0, x) ∇θ̃ (x) · n(x) dS(x)+2

∫ PV

∂Ωd

∇G(x0, x) · n(x) θ̃ (x) dS(x) (3.6)

where G(x0, x) = 1/(4πρ) is the free-space Green’s function of Laplace’s equation,
with ρ = |x − x0|, n(x) is the outward normal of the drop surface (i.e. pointing into
the surrounding fluid), ∇ is with respect to the point x, and the superscript PV

indicates the principal value of the integral (i.e. x0 lies on ∂Ωd). In equation (3.6), the
integrals are respectively referred to as the single-layer potential and the double-layer
potential.

With θ̃ known on the drop surface, equation (3.6) becomes a Fredholm integral
equation of the first kind which must be solved for ∇θ̃ · n. To obtain ∇θ · n we note
that

∇θ · n = −nx + ∇θ̃ · n. (3.7)

The electric stress is then given by β(∂θ/∂n)2/2 = β(∇θ · n)2/2.
Similarly we can write a boundary integral equation for the velocity field surround-

ing the drop. Following Pozrikidis (1992, Ch. 5), the integral equation for a relatively
inviscid drop surrounded by a viscous fluid is

uj (x0) = − 1

4π

∫
∂Ωd

�fi(x)Gij (x0, x) dS(x) +
1

4π

∫ PV

∂Ωd

ui(x)Tijk(x0, x)nk(x) dS(x), (3.8)

where Gij is the Green’s function of Stokes flow, Tijk is the associated stress tensor,
�fi is the jump in interfacial surface force across the drop surface, and ni is the
outward unit normal of the drop. Again we use the free-space Green’s function and
associated stress tensor, which are given by

Gij =
δij

ρ
+

x̃i x̃j

ρ3
and Tijk = −6

x̃i x̃j x̃k

ρ5
, (3.9)

where ρ = |x̃|, x̃ = x − x0, and δij is the Kroneker delta.
The jump in interfacial surface force, �fi is given by

�fi =
(
σ

(1)
ij − σ

(2)
ij

)
nj , (3.10)

where σij is the stress tensor, and the superscripts (1) and (2) denote the surrounding
fluid and the fluid in the drop respectively. For the surrounding viscous fluid
σ

(1)
ij = −pδij + γ̇ij , and for the inviscid drop σ

(2)
ij = −pdδij . Thus (3.10) becomes

�fi = [(pd − p)δij + γ̇ ij ]nj =

[
K − 1

2
β

(
∂θ

∂n

)2
]

ni. (3.11)

With �fi given, (3.8) becomes a set of Fredholm integral equations of the second
kind for the velocity at the drop surface.

For axisymmetric flow the single-layer and double-layer integrals in (3.6) and (3.8)
can be reduced to line integrals over a contour of the drop profile. We make a
change of variables to cylindrical coordinates and perform the azimuthal integration
analytically. The details of this are given in Pozrikidis (1997, 1992).

The details of the general numerical scheme are as follows. Given the drop shape,
we solve the axisymmetric version of (3.6) and use (3.7) to obtain ∇θ · n. The jump in
interfacial surface force, �fi , is then calculated from (3.11). The axisymmetric version
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of (3.8) is solved for the fluid velocity at the surface of the drop. And finally, the drop
interface is moved with the velocity of the fluid at the drop surface.

3.2. Some specifics of the numerical implementation

The drop profile is represented as a set of discrete marker points. The profile is
assumed to be linear between any two marker points except at the very ends of the
drop. For the endpoint intervals the profile, x(r), is assumed to be quadratic in r such
that the drop has a smooth rounded end. The curvature at a given marker point is
calculated using finite differences. With the drop contour discretized, the boundary
integral equations can be written as a set of discrete equations for the unknown
functions evaluated at the marker points.

It should be noted that some of the kernels in the axisymmetric boundary integral
equations have a singularity as x → x0. In an interval where an integrand becomes
singular, the singular behaviour is subtracted from the integrand, integrated analyti-
cally, and then added back to the regular portion of the integral (which is calculated
numerically). The boundary integral equations then result in a set of linear equations
for the values of the unknown functions at the marker points. We use the ‘dgesv’
routine from the numerical package LAPACK to solve our systems of linear equations.

Also, the axisymmetric version of (3.8) turns out to have a infinite number of
solutions for any function �fi (Pozrikidis 1992). Specifically we require the solution
that conserves mass, i.e. ∫

∂Ωd

ui(x)ni(x) dS = 0. (3.12)

A numerically calculated solution will, in general, not satisfy (3.12). To obtain the
desired solution we also calculate the eigenfunction of the associated homogeneous
equation and use a linear combination of the numerically calculated solution and the
eigensolution which satisfies (3.12). Another way to obtain the desired solution is to
regularize the boundary integral equation by removing the offending eigenvalue (see
Pozrikidis 1992, Ch. 4). However, we found that our method, while more expensive
computationally, conserves mass to a better degree.

Finally, once the fluid velocity at the marker points is calculated, we need to
evolve the shape of the drop. We move the marker points with the normal velocity
at the surface and add a tangential displacement to redistribute the marker points
approximately evenly along the contour. Without this redistribution of marker points,
regions of high distortion would become poorly resolved.

3.3. Results

For a variety of values of the dimensionless electric field strength, β , we begin with
an initially spherical drop and then allow it to evolve.

If the strength of the electric field, represented by β in (3.4), is small enough, it is
possible for equilibrium drop shapes to exist; the surface tension stress balances the
electric stress. Above a critical electric field strength there are no equilibrium shapes
and the drop will continue to deform until breakup. It was found that the critical
electric field strength was between 0.204 and 0.2045 (which is in excellent agreement
with the result of βcrit

.
=0.2044 from the spheroidal approximation model (see the

Appendix), and the results of other authors).
Figures 2 and 3 show drops at several times during their evolution. In figure 2,

β = 0.20 and an equilibrium shape exists. In figure 3, β = 0.30 and no equilibrium
shapes exist. The drop deforms until pinch-off occurs, at which point the numerical
code stops. Initially the drop becomes dumbbell shaped (t = 8), but then proceeds
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Figure 2. The shape of an initially spherical drop at times t =0, 4, 8, 12 for β = 0.20,
along with the equilibrium drop shape (dashed line).
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Figure 3. The shape of an initially spherical drop at times t = 0, 2, 4, 6, 8, 9 for β = 0.30. At
time t = 9.24 the drop pinches off into three pieces. Shown in the inset is the charge along the
drop surface for each time.

Volume as a fraction Magnitude New β value for
β of the original drop of charge Rayleigh limit the remaining central drop

0.205 0.29 39 30 0.15
0.21 0.29 39 30 0.16
0.23 0.26 38 27 0.18
0.25 0.23 38 24 0.20
0.3 0.15 38 18 0.27
0.4 0.10 40 13 0.37
0.5 0.10 42 11 0.46

Table 1. Some characteristics of the lobes at the point of pinch-off for various values of β .
The values given are for a single lobe.

to form a three-lobed shape. While the numerical solution stops at the point of
pinch-off, we fully expect the lobes to detach and the drop to break apart into three.
Furthermore, since charges tend to collect at sharp points, we expect there to be a
significant amount of charge on the lobe at the point of pinch-off. The two droplets
formed when the lobes detach will have charges that are equal in magnitude and
opposite in sign and will move rapidly away from the remaining central drop. If the
remaining central drop is below a critical size, it will relax to an equilibrium shape;
if not, the process is likely to repeat.

Table 1 shows, for various values of β , some of the characteristics of the droplets
formed when the lobes detach. The Rayleigh limit for the maximum charge that a
spherical drop can have before becoming unstable is Q̂c, which is given by

Q̂2
c = 64π2ε̂0γ̂ s r̂

3, (3.13)
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Figure 4. The shape of an initially spherical drop at times t =0, 0.2, 0.4, 0.6, 0.79 for a
strong electric field (β =0.70).

where r̂ is the radius of the spherical drop (Rayleigh 1882). Using our scalings, this
can be written non-dimensionally as

Q2
c =

64π2Ṽ

β
, (3.14)

where Qc and Ṽ are the dimensionless charge and volume as given in table 1. If
we compare the critical charges with the numerically calculated values, we find that
for all the drops the charges are above the Rayleigh limit. This indicates that the
lobes, upon detaching from the central drop, would break apart further into smaller
droplets. The fact that the droplets formed are highly charged appears to be a generic
feature that is not directly dependent on the fluid properties or the magnitude of the
electric field. Any droplet or jet that detaches from the main drop will have to do
so by forming a region of very high (radial) curvature. Charge will accumulate there,
resulting in a high concentration of charge on any portion of the drop that detaches.
This general behaviour can be seen in figure 3 (inset).

It should be noted that the Rayleigh limit is for a charged drop in the absence of
an electric field. For a charged drop accelerating in an electric field it is theoretically
possible, in certain situations, to exceed the Rayleigh limit (Mestel 2002); however,
the increase in the critical charge is by no more than a factor of two, which would
still leave several of the droplets in table 1 supercritical. Also included in table 1 is the
value of β for the remaining central drop. For higher initial β values, the remaining
central drop is still supercritical and will probably undergo further breakup through
the formation of another pair of lobes.

It can be seen from table 1 that as β increases the lobe volume decreases. At
β � 0.6 lobe formation disappears and the characteristics of breakup change. Instead
of forming a dumbbell shape (see figure 3, t = 8), the drop always remains convex
until a thin jet-like structure emerges from the endpoint (see figure 4). It should be
noted that the velocities at the endpoint become very large and, in practice, inertia
may become important. (Again, since charges accumulate at sharp points, there would
be a large concentration of charge on the jet which would probably result in the jet
breaking up into many smaller droplets.)

Ha & Yang (2000) performed some experiments where highly conducting drops
suspended in another fluid deform and break apart in an electric field. In their
examples where the surrounding fluid is much more viscous than the drop we can
see this characteristic formation and detachment of lobes at the end of a drop, as
well as the breakup into smaller drops. Eow & Ghadiri (2003) also show some drops
where a lobe forms and detaches from the end of the drop. Moreover, they show one
example where a lobe forms at one end of a drop, detaches, and then proceeds to
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Figure 5. The numerically computed equilibrium drop shape (solid line) compared to that
predicted by the spheroidal approximation model (dashed line) for β = 0.20.
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Figure 6. The numerically computed drop shapes from the boundary integral method (solid
lines) compared to those predicted by the spheroidal approximation (dashed lines) for β = 0.30.
The drop was initially spherical and the contours shown are for t = 1, 2, 3, 4, 5, 6, 7. For the
first two times the two shapes fall directly on top of one another.

break apart into three smaller droplets. This is exactly the behaviour we expect if the
droplet formed when the lobe detaches has a charge greater than the Rayleigh limit.
Also, the phenomenon of a droplet cloud being ejected by a thin jet from the end of
a drop has been seen by Garton & Krasucki (1964).

Results from Sherwood’s (1988) boundary integral numerical simulations show
that, for a conducting drop, pointed ends form just before the breakdown of his
numerical scheme. We see no indication of pointed ends forming here. In Sherwood’s
work however, the viscosity of the drop and the surrounding fluid are equal, and it
appears that the viscosity ratio of the drop to that of the surrounding fluid plays a
significant role in the drop behaviour (Ha & Yang 2000; Dubash & Mestel 2007). This
is certainly true for drops in deforming flows (Taylor 1934). However, in deforming
flows low-viscosity drops form pointed ends and high-viscosity drops form lobes. It
would appear that for drops in an electric field the opposite occurs; low-viscosity
drops form lobes and high-viscosity drops form pointed ends.

For drops with an equilibrium shape, and even in the early stages for drops without
an equilibrium shape, the shape of the deforming drop is very close to spheroidal.
Figure 5 shows, for β = 0.20, the numerically computed equilibrium shape compared
to the equilibrium shape predicted by the spheroidal approximation model of the
Appendix. The difference is very small and is only noticeable near the end of the
drop where the numerically computed shape is blunter than the spheroid. Indeed,
only a small discrepancy was expected based on the results of Taylor (1964). Figure 6
compares the numerically computed shapes with the spheroidal shape predicted by the
spheroidal approximation, for a drop with no equilibrium shape. The correspondence
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Figure 7. Equilibrium curve: the numerically computed equilibrium aspect ratios, α, for
several values of β (×). The solid line is the stable equilibrium curve calculated from the
spheroidal approximation. The dashed portion of the line is the unstable equilibrium branch.
The dotted line is the small-deformation result of Taylor (1966b).
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Figure 8. The evolution in time of drops: (a) drops for which there are equilibrium shapes,
(b) drops for which there exist no equilibrium shapes. The numerical results are given by
the solid lines. Also shown for comparison are the results for the spheroidal approximation
(dashed line).

is quite good, except at large deformations, where the numerically calculated shape
begins to deviate noticeable from a spheroid prior to the drop breaking up. For
example, when β = 0.3, the spheroidal aspect ratio, α, is within 10 % of the exact
result up to α = 4.

Figure 7 shows the numerically computed equilibrium aspect ratios, α, for several
values of β . For the numerical results we define the aspect ratio as the half-length
of the drop divided by its radius at the point x = 0 (we use this definition of aspect
ratio only while the drop is convex). Also shown is the equilibrium curve from the
spheroidal approximation (see the Appendix). The difference is again quite small, with
the numerically computed values being slightly lower than the spheroidal model for
a given value of β .

Figure 8(a) shows a plot of the aspect ratio versus time for several values of β

for which there exist equilibrium shapes. There is a good correspondence between
the numerical results and the spheroidal model. The only discrepancy is again that
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the numerical model predicts a slightly lower equilibrium aspect ratio (except for
β = 0.204, which has yet to reach the equilibrium shape).

Figure 8(b) shows the evolution of drops for which β >βcrit, and no equilibrium
shapes exist. Drops for which β is significantly larger than βcrit undergo rapid elonga-
tion (see figure 8b β = 0.30). However, where β is close to βcrit the drop experiences
a period of slow elongation near the critical aspect ratio. As the critical electric field
strength is approached from above, this period of slow elongation becomes longer and
longer. Comparing the numerical results with the spheroidal approximation results
in figure 8(b), the initial rates of deformation are well matched; however, the later
time behaviour shows some discrepancies. It should be noted that the later time
period of rapid deformation matches in both models, it is only in the period of slow
deformation near the critical aspect ratio where the models differ.† The boundary
integral numerical results show that this period of slow deformation is somewhat
shorter than that predicted by the spheroidal model. And closer to the critical electric
field strength the discrepancy becomes more pronounced. This is most likely due to a
difference in the critical electric field strengths between the two models. If the critical
value of β is lower in the boundary integral model, for a fixed value of β >βcrit

near the critical value, the distance from the critical value is larger for the numerical
model. Therefore the numerical model is more likely to show a shorter period of slow
deformation. Farther away from the critical electric field strength, where we no longer
have this period of slow deformation, the discrepancy disappears; see figure 8(b),
β = 0.30.

4. A model for slender drops
Here we consider drops that are long and slender, i.e. drops for which the radius

from the axis of symmetry is much smaller than the drop length. Following Taylor
(1966a) and Sherwood (1991) we model the electric field as a line distribution of
point charges along the axis of the drop. The velocity field is modelled as the result
of a line distribution of sources and sinks combined with a line distribution of point
forces (Stokeslets). This idea has been successfully used by Buckmaster (1972, 1973) to
model the equilibrium shapes, as well as the evolution of a slender drop in deforming
external flows. It has also been used to model the equilibrium shapes of conducting
and dielectric drops subject to an electric field (Sherwood 1991). We now use this idea
to model the time-dependent deformation of a drop in an electric field.

4.1. Governing equations in cylindrical coordinates

Cylindrical coordinates, (r̂ , x̂, φ), are used for the formulation. The drop shape is
given by r̂ = R̂(x̂, t̂) for −�̂ � x̂ � �̂. Because of the physical symmetry of the problem
we assume that the drop profile is symmetric about x =0. The physical setup is
illustrated in figure 9.

Given an initial drop shape, R̂(x̂, 0), for −�̂ � x̂ � �̂ (and recalling that �̂ = �̂(t̂)),
we scale lengths in the x-direction with L̂ = �̂(0) and lengths in the r-direction with
R̂0 = R̂(0, 0). For a slender body we require

ε =
R̂0

L̂
� 1. (4.1)

† Note that for all the numerical data shown in figure 8(b) the drop shape always remains convex.
Once the drop profile becomes concave (e.g. figure 3, t = 8 or figure 4, t = 0.79) the aspect ratio is
no longer a good measurement of the drop shape.
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Figure 9. Physical setup in cylindrical coordinates.

Instead of (3.1) and (3.2) we use the following scalings for our slender-body analysis:

x̂ = L̂x, r̂ = R̂0r, t̂ =
εL̂

Û
t, ûr =

Û

ε
ur, ûx =

Û

ε2
ux, (4.2)

p̂ =
µ̂Û

ε2L̂
p, τ̂ ij =

µ̂Û

ε2L̂
τij , θ̂ = δÊ0L̂θ, ψ̂ = Û L̂2ψ, (4.3)

where Û = γ̂ s/µ̂ is the velocity scale used previously. The factor of δ is included in
the scaling of θ̂ because, physically, it is the electric stress on the surface of the drop
that causes the deformation and drives the fluid motion. Thus, we will require the
electric stress to balance with the viscous stresses at lowest order. Later on we will fix
δ = ln(1/ε) to ensure that this occurs.

If C(x) is a line distribution of point charges located on the axis of the drop with
−� � x � �, then the electric potential resulting from the distribution and the uniform
field is given by (Taylor 1966a)

θ(r, x) = −x +

∫ �

−�

C(s)

[(x − s)2 + ε2r2]1/2
ds. (4.4)

For a line distribution of sources/sinks, q(x), and a line distribution of point forces,
σ (x), located on the axis of the drop with −� � x � �, the stream function is given by

ψ = −
∫ �

−�

q(s)(x − s)

[(x − s)2 + ε2r2]1/2
ds + ε2r2

∫ �

−�

σ (s)

[(x − s)2 + ε2r2]1/2
ds. (4.5)

Positive q represents a source and negative q is a sink, while positive σ represents a
point force in the positive x-direction.† (Even though the second integral in (4.5) has a
factor of ε2 in front of it, because of the close-to-singular nature of the actual integral,
the contribution from the σ term will still be significant at first order. However, it
will be found that σ takes a passive role.) For conservation of mass we also require∫ �

−�

q(s) ds = 0. (4.6)

Finally, the pressure associated with ψ is

p = 2ε2

∫ �

−�

σ (s)(x − s)

[(x − s)2 + ε2r2]3/2
ds. (4.7)

† To return to dimensional variables Ĉ(x̂) = 4πε̂0Ê0L̂C(x), q̂(x̂) = 4πÛ L̂q(x), and σ̂ (x̂) =

8πµ̂Ûσ (x).
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Note that because of symmetry about the plane x = 0, the stream function must be
an odd function of x. This requires q(x) to be an even function and σ (x) to be an
odd function.

The electric potential, (4.4), already satisfies Laplace’s equation and the condition
at infinity, (2.4). We need only consider the boundary condition on the surface of the
drop, which is now

θ = 0 on r = R(x). (4.8)

The stream function, (4.5), already satisfies (2.5) and the condition of zero flow at
infinity. So we need only consider the boundary conditions on the surface of the drop.
With the scalings (4.2) and (4.3) the boundary conditions, (2.6), (2.8), and (2.9) can
now be written

τnt = 0 on r = R(x), (4.9)

pd − p + τnn +
1

2
δ2β

(
∂θ

∂n

)2

− εK = 0 on r = R(x), (4.10)

−∂R

∂t
+ ur − R′ux = 0 on r = R(x), (4.11)

respectively, where the prime denotes differentiation with respect to x and β is the
dimensionless electric field strength given by (3.3).

4.2. Electric stress

Imposing (4.8) on the electric potential, we obtain

−x +

∫ �

−�

C(s)

[(x − s)2 + ε2R2]1/2
ds = 0. (4.12)

Following the method of Tillett (1970) we can asymptotically approximate the integral
in (4.12) for small ε. To leading order in ε we obtain

C(x) =
1

2
x

[
ln

(
2
√

�2 − x2

εR

)]−1

. (4.13)

Using (4.4), and asymptotic approximations for the integrals, we obtain

∂θ

∂r
≈ −x

r

[
ln

(
1

ε

)]−1

and
∂θ

∂x
≈ −

[
ln

(
1

ε

)]−1

. (4.14)

Approximations (4.14) are valid everywhere except in a small region near x = ±� or
when R(x) is of size O(ε).

The normal and tangent vectors to the surface are given by

n = (nr, nx) = [1 + ε2(R′)2]−1/2(1, −εR′), t = (tr , tx) = [1 + ε2(R′)2]−1/2(εR′, 1).

(4.15)

Thus, away from the endpoints of the drop, the electric stress is

1

2

(
∂θ

∂n

)2

≈ 1

2

x2

ε2r2

[
ln

(
1

ε

)]−2

on r = R(x). (4.16)

4.3. Fluid motion

To determine the stream function we need to calculate the source/sink distribution
and the point force distribution from the boundary conditions on the drop surface.
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Equations (4.9) and (4.10), when written in terms of the stream function, give two
integral equations relating the unknown distributions, q(x) and σ (x). Using asymptotic
approximations for small ε, these can be reduced to a system of differential equations
which we are then able to solve for q(x) and σ (x). Once q(x) and σ (x) are known,
equation (4.11) tells us how the drop shape evolves in time.

We substitute (4.15) and (4.16) into (4.9)–(4.11), write the components of velocity
and stress in terms of the stream function (4.5), and then using asymptotic approxima-
tions for the integrals (Tillett 1970), we obtain (to first order)

q ′ − σ − R′q

R
= 0, (4.17)

2pdR
2 − 8q + βx2 = 0, (4.18)

∂R

∂t
− 2q

R
= 0. (4.19)

We have set δ(ε) = ln(1/ε) so that the electric stress term balances with the pressures
and the viscous stress, and have assumed that β = O(1). It turns out that surface
tension is negligible at highest order. If we consider the normal stress balance, (2.8),
away from the ends of the drop, the surface tension stress is O(1/ε); however the
viscous stresses are O(1/ε2). This is also observed in the spheroidal model (presented
in the Appendix), where for high-aspect-ratio drops the change in surface tension
energy was several orders of magnitude smaller than the viscous dissipation.

Equations (4.18) and (4.19) plus conservation of mass, (4.6), govern the deformation
of the drop in our slender-body theory approximation. The value of σ is then deter-
mined a posteriori from (4.17). The system is valid away from the endpoints of the
drop, where R′ ∼ O(1); where R′ is large the approximations made are no longer
valid.

For our future analysis we rewrite (4.17)–(4.19) in a slightly more convenient form.
From (4.18) we can solve for q . Substituting for q and q ′ in (4.19) and (4.17) we
obtain a single equation for the evolution of the drop shape in terms of R(x) and pd ,
and equations for σ (x) and q(x) in terms of R(x) and pd:

∂R

∂t
= 1

4
β

x2

R
+ 1

2
pdR, (4.20)

σ = 1
4
βx + 1

4
pdRR′ − 1

8
β

R′x2

R
, (4.21)

q = 1
8
βx2 + 1

4
pdR

2. (4.22)

4.4. Results for slender drops

4.4.1. Similarity solution

For the set of equations (4.20)–(4.22) we look for a similarity solution. It turns out
that for the slender-body model a finite-time singularity can be shown to exist. Hence
we, a priori, modify the method slightly to incorporate this singularity.

Using (4.22) and symmetry in the plane x = 0, (4.6) is equivalent to∫ �(t)

0

(βx2 + 2pdR
2) dx = 0 ⇒ 1

3
β�3 +

V

π
pd = 0,

⇒ pd = −πβ�3

3V
, (4.23)
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where V = 2
∫ �(t)

0
πR2 dx is the (non-dimensional) volume of the drop. Hence we can

write (4.20) as

R
∂R

∂t
=

1

4
βx2 − πβ

6V
�3R2. (4.24)

In equation (4.24) we make the following substitutions

x = ξ (tc − t)α, R(x) = ρ(ξ )(tc − t)γ , (4.25)

where ξ and ρ(ξ ) are the similarity variables, tc is the unknown critical time where
the finite-time singularity occurs, and α and γ are unknown exponents. From (4.25)
it follows that the endpoint of the drop is given by

�(t) = λ(tc − t)α, (4.26)

where λ is a constant. In terms of the similarity variables, (4.24) becomes

−(ξρ2)′ =
3

2
βξ 2 − πβ

V
λ3ρ2, (4.27)

where the prime now denotes differentiation with respect to ξ , and we have chosen

α = − 1
3
, γ = 1

6
(4.28)

to eliminate time from the problem.
Solving (4.27), and applying the boundary condition ρ =0 at ξ = λ we obtain

ρ2 =

⎧⎪⎨⎪⎩
3β

2(3 − πβλ3/V )

(
λ(3−πβλ3/V )ξ (πβλ3/V −1) − βξ 2

)
if

πβ

V
λ3 
= 3

3
2
βξ 2 ln(λ/ξ ) if

πβ

V
λ3 = 3.

(4.29)

The only value of the parameter πβλ3/V for which a ‘drop-like’ solution is obtained,
is for

πβ

V
λ3 = 1. (4.30)

For all other values of this parameter either ρ → 0, or ρ → ∞ as ξ → 0. With
πβλ3/V = 1, (4.29) reduces to

ρ2 = 3
4
β(λ2 − ξ 2). (4.31)

The point source/sink distribution and the point force distribution can then be written

q = βQ(ξ )(tc − t)−2/3, σ = βΣ(ξ )(tc − t)−1/3, (4.32)

where the similarity variables Q(ξ ) and Σ(ξ ) are given by

Q(ξ ) =
3

16
ξ 2 − 1

16
λ2, Σ(ξ ) =

5

16
ξ +

ξ 3

8(λ2 − ξ 2)
. (4.33)

It can be seen that, as expected, ρ and Q are even functions, while Σ is an odd
function.

4.4.2. Initial value problem

In addition to the similarity solution we can consider the initial value problem for
a slender drop. Given an initial drop shape, (4.24) determines how it deforms and
evolves in time.



Behaviour of a conducting drop subject to an electric field 485

In order to avoid singularities at the endpoint of the drop due to a rounded end it
is more convenient to perform calculations using the variable

W (x, t) = R2(x, t) (4.34)

for the drop shape instead of R(x, t). Also, by scaling t , x, and R we can eliminate β

and π/V from (4.24). Thus we can, without loss of generality, write

∂W

∂t
= 1

2
x2 − 1

3
�3W. (4.35)

Also, equation (4.11) evaluated at �(t) gives an equation for the evolution of �(t):

d�

dt
= −∂W

∂t

∣∣∣∣
x=�

/
∂W

∂x

∣∣∣∣
x=�

. (4.36)

Given an initial drop shape W (x, 0) = W̃ 0(x), |x| � �(0) we look for a solution
W (x, t) and �(t), with W (�, t) = 0, that satisfies (4.35). If we define the integrating
factor

h(t) = exp

(∫ t

0

1
3
�3(s) ds

)
, (4.37)

then the general solution of (4.35) can be written

W (x, t) =
1

h(t)

(
1
2
x2

∫ t

0

h(s) ds + W0(x)

)
for |x| � �(t) (4.38)

(and W =0 for |x| >�(t)), where W0(x) is the analytic continuation of W̃ 0(x) from its
original domain. To satisfy W (�, t) = 0 we require

W0(�) = − 1
2
�2

∫ t(�)

0

h(s) ds for � > �(0). (4.39)

It can be verified that (4.38) conserves mass.
Differentiating (4.39) twice and after some manipulation we can obtain

f ′′(�)

(
d�

dt

)2

+ f ′(�)
d2�

dt2
=

1

3
�3f ′(�)

d�

dt
, (4.40)

where

f (x) =

(
W0(x)

x2

)
. (4.41)

This differential equation can be solved to obtain

t =

∫ �

�(0)

f ′(x)∫ x

�(0)

1
3
s3f ′(s) ds − 1

2

dx. (4.42)

Given an initial condition, (4.42) determines t(�), and inverting this we can obtain
W (x, t) from (4.38). However, the integrals involved can only be solved analytically
for suitably simple initial drop profiles, W0(x).

We can also compute the solution numerically directly from (4.35). Figure 10 shows
the evolution in time for an initially spheroidal drop. Beginning with a spheroidal
initial condition we are able to obtain the similarity solution, which in this case is

R2 = 3
4

[
(1 − t)1/3 − (1 − t)x2

]
. (4.43)
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Figure 10. Evolution of a slender drop in time. The initial drop profile is R2 = 3(1 − x2)/4.
The drop shape is given for t = 0 to t = 0.9 with �t =0.1; tc = 1.0003. Note that the axes are

given in terms of the scaled variables, whereas the physical width is εR̂.
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Figure 11. Time evolution of slender drops. (a) The initial drop profile is R2 = 5(1 − x4)/8.
The drop shape is given for t = 0 to t = 2.0 with �t = 0.2; tc = 2.04. (b) The initial drop profile
is R2 = 5(1−x3/2)/6. The drop shape is given for t = 0 to t = 0.65 with �t = 0.05, and t = 0.685;
tc = 0.686.

It can be seen in figure 10 that the drop shape is always spheroidal. Also, for the
numerical results of figure 10 we obtain tc =1.0003, which is in excellent agreement
with tc = 1 from (4.43). (In terms of the numerical computations, tc corresponds to
the point in time when one of the quantities involved goes to infinity.)

Figure 11 shows the evolution of drops whose initial profiles are not spheroidal.
Figure 11(a) shows a drop whose end is blunter than a spheroid. In this case the drop
appears to pinch-off into two lobes. Figure 11(b) shows a drop whose end is sharper
than a spheroid. Here the drop profile becomes more pointed as it evolves. These two
types of final shapes, two lobes or pointed ends, appear to be characteristic of the
slender-body theory equations; all drops appear to evolve to one of these final shapes
(except the similarity solution).

The long-term behaviour of the slender-body model is controlled by f (x), and in
particular by the sign of f ′(x). Slight changes in the analytical form of the initial shape
W0(x) can lead to very different long-time behaviour. If f (x) is strictly decreasing for
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Figure 12. (a) Evolution of �(t) for the numerical computations of the slender-body equations
(solid lines). Curves 1, 2, and 3 correspond to the drops in figures 10, 11(a), and 11(b)
respectively. (b) Evolution of �(t) from the spheroidal approximation (solid lines). The slope
predicted by the similarity solution is given by the dashed line.

x > �(0) then, as � → ∞,

t → tc =

∫ ∞

�(0)

3f ′(x)∫ x

�(0)

s3f ′(s) ds − 1
2

dx, (4.44)

and the drop may blow up in a finite time. Combining (4.42) and (4.44), it can be
seen that if f ′(x) ∝ xn as x → ∞, for some n> −4, then � ∼ (n + 4)1/3(tc − t)−1/3 and
W ∝ (tc − t)1/3. An example with n= 1 is given in figure 11(a). If on the other hand
f ′(x) ∝ ex as x → ∞ then � ∼ [3(tc − t)/2]−1/2. Moreover if f ′(x) ∝ ex4

, then the integral
in (4.44) does not converge and tc → ∞.

However, if f ′(�c) = 0 for some �c > �(0), then the drop elongates in a finite time until
� = �c, at which point d�/dt becomes infinite. It follows from (4.36) that Wx(�c) = 0 and
hence locally W ∝ (�c − x)2, so that the drop develops a pointed end. This behaviour
is shown in figure 11(b). The derivation of the slender-body equations breaks down
at this point, as both the electric and capillary stresses become infinite. Furthermore,
a direct balance between the two would require the cone to adopt the Taylor angle
in violation of the slender-body assumption.

If an initially convex drop shape satisfies f ′(x) < 0 for x > 0, it may remain convex
or it may develop a dumbbell shape. However, differentiating (4.35) twice with respect
to x, it becomes clear that if the curvature Wxx becomes positive, it remains so for all
time (as can be seen in figure 11a). The time behaviour of �(t) is shown in figure 12.
Naturally, the development of a pointed end does not follow the (tc − t)−1/3 behaviour.

Since the detailed drop behaviour depends on the analytic continuation of W0(x)
for x > 1, it is no surprise that the problem is numerically ill-conditioned. Except
for the quadratic initial condition of the similarity solution, there is a reasonable
variation between the predicted numerical and analytic blow-up times.

In addition, it appears that the similarity solution is unstable. Any small errors
in the numerical computations result in the drop shape evolving from spheroidal to
a shape similar to one of those in figure 11. Only if the approximations made in
the numerical computations are exact for quadratic polynomials can we obtain the
similarity solution. Physically, we expect the spheroidal shape to become unstable if
the drop is to break up.
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Figure 13. Evolution of �(t) for long and slender drops from the boundary integral
calculations (solid lines). The initial drop shape was a spheroid of aspect ratio 10. The
dashed line indicates the slope of the slender-body similarity solution.

We can also examine the behaviour of �(t) from the spheroidal approximation of the
Appendix; see figure 12(b). For later time, as t → tc even the spheroidal approximation
model exhibits a (tc − t)−1/3 behaviour.

Unfortunately, the boundary integral results do not compare well with the slender-
body calculations. Even if we begin the boundary integral calculations with a
spheroidal drop with a high aspect ratio (and β > βcrit), we find that there is a
very brief period of elongation, but then small lobes form at the ends of the drop and
breakup occurs. The similarity solution (4.31) is not seen, nor are the time-dependent
shapes given in figure 11. The brief period of elongation does, however, approximately
match the scalings of the similarity solution (see figure 13), though, when the lobes
begin to form the drop length no longer increases, and this correspondence is lost. It
is likely that the slender-body analysis will be better for dielectric drops, where long
thin drops are more easily obtained.

It would seem that the main deficiency of the slender-body model is that it does
not accurately represent the physics of the problem when R(x) becomes small. When
R(x) becomes of size O(ε) surface tension effects become significant, and also, the
R(x) dependence of the electric stress becomes important. We believe that these two
effects (the latter via the velocity field induced) are important for the formation and
pinching-off of lobes. At present, it is not possible for the slender-body equations to
result in a drop that pinches off. From (4.35) it can be seen that if R(x) (and thus
W (x)) approaches 0 at some point x = a 
= 0 then

∂W (a, t)

∂t
≈ 1

2
βa2 > 0, (4.45)

which prevents the drop from pinching off. The only place a drop can pinch off is at
x = 0, and even this only occurs as � → ∞.

5. Summary and concluding remarks
We have considered the slow deformation of a relatively inviscid conducting drop

surrounded by a viscous fluid subject to a uniform electric field. The electric field
stretches the drop in the direction of the field. As the drop elongates, surface tension
becomes less important except at the drop ends, with the primary balance between
viscous and electric stresses.
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We first presented some numerical results based on a boundary integral formulation.
For weak electric fields we recovered the known equilibrium drop shapes, while for β

exceeding some critical value, βcrit, we obtained the time evolution of the drops. For
electric fields above the critical strength, two charged lobes form and break off from
the ends of the drop. The droplets formed are highly charged and are themselves
unstable. As the electric field strength increases, the volume of the lobes decreases
and eventually the lobe formation disappears – the drop breakup then consists of a
highly charged jet-like structure being ejected from the end of the drop. It was seen
that for all the drops, the shape was close to spheroidal for aspect ratios up to about
5. Also for electric fields slightly exceeding this critical value, we found that there is a
period of slow deformation whose duration grows as βcrit is approached from above.

Physically this period of slow deformation for β near βcrit has interesting
ramifications. For the pedestal insulator problem discussed in the introduction, even
after a leak has been fixed, sufficient rainwater might have already leaked inside so
that the value of β for the system is above the critical value. In this case breakdown
will still occur, though it could take anywhere from 5 days to 5 months for the drop
to pass through this region of slow elongation and for any signs of breakdown of the
insulator to be seen. (This is based on a value of β =0.21. The large variation in time
is primarily due to the variation of the viscosity of bitumen with temperature. The
period of 5 days corresponds to a temperature of 20 ◦C, and 5 months corresponds
to a temperature of 5 ◦C.) For industrial processes, such as the purification of liquids
using electric fields, this period of slow elongation permits the use of supercritical
electric fields for a limited time. This leads to the possibility of using higher pulsed
electric fields, instead of weaker continuous electric fields. The asymptotic behaviour
close to critical is examined in detail in Dubash & Mestel (2006).

We have also derived equation (4.35), which models the deformation of a slender
drop. The model has a similarity solution (albeit unstable) where the shape of the
drop is always spheroidal, and where the drop length scales as (tc − t)−1/3. As well,
we are able to obtain the general solution for the slender-body equations. Depending
upon the initial drop shape we can obtain two different types of drop behaviour.
Either there is a finite-time blowup (� → ∞ as t → tc), or a pointed end forms at
some finite value of �. In the former case the drop length scales as (tc − t)−1/3 or as
(tc − t)−1/2, depending on the structure of f (x) in (4.41). Unfortunately, the slender-
body model does not appear to capture properly the dynamics of breakup. Naturally,
the slender-body analysis applies best to drops which extend indefinitely, rather than
to the observed lobe formation. It turns out that the negligible drop viscosity is
responsible for the differences with the breakup mechanism of Sherwood (1988) (i.e.
pointed ends). If the drop is given an appreciable viscosity, the formation of lobes
disappears and pointed ends can be obtained. How the viscosity of the drop affects
the breakup behaviour is presented elsewhere (Dubash & Mestel 2007).

Our formulation assumed that the deformation of the drop was a slow process,
i.e. that the Reynolds number of the flow is small. The velocities were highest
during the later stages of the deformation, near breakup. If, for example, we take
the pedestal insulator problem, where we have a drop of rainwater in bitumen, then
Re ∼ 10−5 near break up, (ρ̂ ∼ 103 kgm−3, Û ∼ 10−4 m s−1, L̂ ∼ 10−1 m, µ̂ ∼ 103 Pa s,
and β ∼ O(1)). However, if we have a water drop in oil (µ̂ ∼ 1 Pa s, Û ∼ 10−1 m s−1),
then Re ∼ 10 near break up. At this point inertial effects could become important,
but this is beyond the scope of this work.

N. D. would like to gratefully acknowledge financial support from the Natural
Sciences and Engineering Research Council of Canada.
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Appendix. Spheroidal approximation model
The spheroidal approximation has been used by Garton & Krasucki (1964), Taylor

(1964), and Sherwood (1988) to calculate the equilibrium shapes of conducting drops
in an electric field. Taylor (1964) showed that the equilibrium shapes are very close
to being spheroidal, thus it is reasonable to assume that shape of the drop as it
evolves to equilibrium is also close to spheroidal. Hence, we consider a spheroidal
approximation model for the time-dependent deformation of the drop.

We use the prolate spheroidal coordinate system for the mathematical formulation.
A more detailed description of the coordinate system can be found in many books; see
for example Morse & Feshbach (1953) and Happel & Brenner (1965). The problem
is non-dimensionalized using (3.1) and (3.2).

In this work, we use the following construction of the prolate spheroidal coordinate
system: {(λ, ζ, φ) : 1 � λ< ∞, −1 � ζ � 1, 0 � φ < 2π}, where

x = cλζ, r = c
√

(λ2 − 1)(1 − ζ 2), (A 1)

and where x is the distance along the axis of symmetry of the projection of a point
onto the axis of symmetry, r is the perpendicular distance of a point from the axis
of symmetry, and x = ±c are the locations of the foci along the axis of symmetry.
The coordinate grid is constructed from confocal spheroids (λ= constant) and hyper-
boloids (ζ = constant). For the spheroid λ= λ0 the aspect ratio, α is given by

α =
λ0√

λ0
2 − 1

. (A 2)

We are assuming that the drop deforms smoothly from one spheroid to another, thus
we can represent the surface of the drop by λ= λ0(t). It should be noted that to
conserve mass we require c = c(λ0(t)), and thus we have a coordinate system that is
moving in time.

For the spheroidal approximation the normal stress condition, (3.4), must be
modified. Because we have restricted the shape of the drop to be a spheroid, we
cannot, in general, satisfy the stress balance at every point on the surface of the drop.
We instead choose to impose the normal stress balance in an average sense through
a balance of energy (Taylor 1964; Garton & Krasucki 1964; Sherwood 1988).

Instead of balancing pressures and deviatoric stress with the electric stress and the
surface tension, we balance the viscous dissipation with the rates of change of electric
field energy and surface tension energy of the drop:∫

Ω

γ̇ 2 dv + β
dUe

dt
+

dUs

dt
= 0, (A 3)

where γ̇ =
√

γ̇ ij γ̇ ij /2 is the second invariant of the rate-of-strain tensor, Ue is the
electric field energy, Us is the surface tension energy of the drop, and β is the
dimensionless electric field strength given by (3.3). Equation (A 3) is also equivalent
to taking the product of (3.4) with the normal velocity and integrating over the drop
surface.

The general solution of (2.2) in spheroidal coordinates is well known (see for
example Lamb 1932, Art. 103). Applying boundary conditions (2.3) and (2.4) (along
with the condition that θ(λ, ζ ) is finite at ζ = ±1) we obtain the electric potential for
the field surrounding the drop λ= λ0:

θ(λ, ζ ) = −cζ

[
λ − λ0

Q1(λ0)
Q1(λ)

]
, (A 4)
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where

Q1(λ) =
1

2
λ ln

(
λ + 1

λ − 1

)
− 1, (A 5)

is a Legendre function of the second kind.
The general solution of (2.5) in spheroidal coordinates is known (see for example

Sampson 1891). Applying the boundary condition at infinity and requiring that ψ is
regular at ζ = ±1, the general solution reduces to

ψ(λ, ζ ) = c2(λ2−1)(1−ζ 2)

∞∑
n=0

[anQ
′
n(λ)P

′
n(ζ )+bn(Q

′
n+2(λ)P

′
n(ζ )+Q′

n(λ)P
′
n+2(ζ ))], (A 6)

where Pn(x) and Qn(x) are Legendre functions of the first and second kind respectively.
We are left with two sets of unknown coefficients, an and bn, to determine.

For computations we truncate (A 6), taking the first 2N terms. Applying boundary
conditions (2.6) and (2.9) this leads to a finite set of linear equations for the coefficients
b0, a2, . . . , a2N, b2N, which can be solved. (Note that a0 is arbitrary as P ′

0(x) = 0, and
is only included for a neat presentation of (A 6), and the odd numbered coefficients
are zero due to the symmetry of the problem.)

In spheroidal coordinates the non-dimensional surface tension energy is (O’Konski
& Thacher 1953)

Us = 2πc2

[(
λ2

0 − 1
)

+ λ2
0

√
λ2

0 − 1 arcsin

(
1

λ 0

)]
. (A 7)

Recalling that both c and λ0 are functions of time, it can be seen that the rate of
change of surface tension energy has the form

dUs

dt
= fs(λ0)

dλ0(t)

dt
, (A 8)

where fs(λ0) is only a function of λ0.
The electric field energy of a conductor in an otherwise uniform electric field is

unfortunately infinite. However, we are able to calculate the change in the electric
field energy of a uniform field after introducing a conductor into the field. If U0 is
the energy of the initial uniform electric field, and Ue is the energy of the uniform
field with the conductor present, then from Stratton (1941)

U0 − Ue =
1

2

∫
Ωd

dv +
1

2

∫
Ω

((0, 0, 1) − E)2 dv, (A 9)

where E = −∇θ is the electric field with the conductor present. So the rate of change
of electric field energy also has the form

dUe

dt
= − d

dt
(U0 − Ue) = fe(λ0)

dλ0(t)

dt
, (A 10)

where fe is strictly a function of λ0.
Finally, to calculate the viscous dissipation we use the result that

1

2

∫
Ω

τij γ̇ ij dv =

∫
∂Ωd

(−pδij + τij )uinj ds, (A 11)

where nj is the outward normal of Ω , i.e. nj points into the drop. Owing to the
axisymmetry, the right-hand side of (A 11) can be reduced to a line integral over the
profile of the drop. It turns out that (dλ0/dt)2 is a factor of the viscous dissipation.
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Taking this into consideration, along with the structure of (A 8) and (A 10), the energy
equation, (A 3), can be written as a first-order differential equation for the evolution
of λ0,

dλ0

dt
= −βfe(λ0) + fs(λ0)

fγ̇ (λ0)
, (A 12)

where fγ̇ is the viscous dissipation with the dependence on the rate of change of λ0

factored out. For a given initial drop shape, λ0(0), we can solve (A 12) to obtain the
evolution of the drop in time. A detailed derivation of the spheroidal model can be
found in Dubash (2006).

For all the spheroidal approximation results shown in this paper a fourth-order
Runge–Kutta scheme is used to solve (A 12). We have also taken N = 5. When N

is increased no noticeable change occurs in the evolution of the drop, except at very
high aspect ratios for which the entire model is not considered accurate. For the
spheroidal approximation model βcrit

.
= 0.2044. For purposes where the details of

breakup are unimportant, this spheroidal model provides a fast, accurate alternative
to full numerical computations.
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